Seeing With OpenCV

A Computer-Vision Library

penCV — Intel's free, open-source
Ocomputer-vision library — can
greatly simplify computer-vision
programming. It includes advanced
capabilities — face detection, face track-
ing, face recognition, Kalman filtering,
and a variety of artificial-intelligence (Al)
methods — in ready-to-use form. In addi-
tion, it provides many basic computer-
vision algorithms via its lower-level APIs.
A good understanding of how
these methods work is the key to get-
ting good results when using OpenCV.
In this five-part series, I'll introduce you
to OpenCV and show you how to use it
to implement face detection, face
tracking, and face recognition. Then,
I'll take you behind the scenes to
explain how each of these methods
works and give you tips and tricks for
getting the most out of them.
This first article introduces OpenCV.
I'll tell you how to get it and give you a
few pointers for setting it up on your
computer. You'll learn how to read and
write image files, capture video, convert
between color formats, and access pixel
data — all through OpenCV interfaces.

OpenCV Overview

OpenCV is a free, open-source
computer vision library for C/C++
programmers. You can download it
from http://sourceforge.net/proj
ects/opencvlibrary.

Intel released the first version of
OpenCV in 1999. Initially, it required
Intel's Image Processing Library. That
dependency was eventually removed,
and you can now use OpenCV as a
standalone library.

OpenCV is multi-platform. It sup-
ports both Windows and Linux, and
more recently, MacOSX. With one
exception (CVCAM, which I'll describe
later in this article), its interfaces are
platform independent.

Features

OpenCV has so many capabilities,
it can seem overwhelming at first.
Fortunately, you'll need only a few to
get started. I'll walk you through a
useful subset in this series.

Here's a summary of the major

functionality categories in OpenCV,

version 1.0, which was just released
at the time of this writing:

Image and video |/O

These interfaces let you read in
image data from files, or from live
video feed. You can also create
image and video files.

General computer-vision and
mage-processing algorithms
(mid- and low-level APIs)

Using these interfaces, you can

FIGURE 1. Among OpenCV’s many
capabilities are face detection (top
left), contour detection (top right),
and edge detection (bottom).

62 SERVO 01.2007

experiment with many standard com-
puter vision algorithms without having
to code them yourself. These include
edge, line, and corner detection, ellipse
fitting, image pyramids for multiscale
processing, template matching, various
transforms (Fourier, discrete cosine,
and distance transforms), and more.

High-level computer-vision modules

OpenCV includes several high-level
capabilities. In addition to face-
detection, recognition, and tracking, it
includes optical flow (using camera
motion to determine 3D structure),
camera calibration, and stereo.

Al and machine-learning methods
Computer-vision applications often
require machine learning or other Al
methods. Some of these are available in
OpenCV's Machine Learning package.

Image sampling and view
transformations

It's often useful to process a group
of pixels as a unit. OpenCV includes
interfaces for extracting image
subregions, random sampling, resizing,
warping, rotating, and applying
perspective effects.

Methods for creating and analyzing
binary (two-valued) images

Binary images are frequently used
in inspection systems that scan for
shape defects or count parts. A binary
representation is also convenient when
locating an object to grasp.

Methods for computing 3D
information

These functions are useful for
mapping and localization - either with
a stereo rig or with multiple views from
a single camera.

Math routines for image processing,
computer vision, and image
interpretation

OpenCV includes math commonly
used, algorithms from linear algebra,
statistics, and computational geometry.

Graphics

These interfaces let you write text
and draw on images. In addition to vari-
ous fun and creative possibilities, these
functions are useful for labeling and mark-
ing. For example, if you write a program
that detects objects, it's helpful to label
images with their sizes and locations.

GUI methods

OpenCV includes its own window-
ing interfaces. While these are limited
compared to what can be done on
each platform, they provide a simple,
multi-platform APl to display images,
accept user input via mouse or key-
board, and implement slider controls.

Datastructures and algorithms

With these interfaces, you can
efficiently store, search, save, and
manipulate large lists, collections (also
called sets), graphs, and trees.

Data persistence

These methods provide convenient
interfaces for storing various types of
data to disk and retrieving them later.

Figure 1 shows a few examples of
OpenCV's capabilities in action: face
detection, contour detection, and edge
detection.

Organization

OpenCV's functionality is con-
tained in several modules.

CXCORE contains basic datatype
definitions. For example, the data
structures for image, point, and rectan-
gle are defined in cxtypes.h. CXCORE
also contains linear algebra and statis-
tics methods, the persistence func-
tions, and error handlers. Somewhat
oddly, the graphics functions for draw-
ing on images are located here, as well.

CV contains image processing and
camera calibration methods. The
computational geometry functions are
also located here.

CVAUX is described in OpenCV's doc-
umentation as containing obsolete and

FIGURE 2. Selecting | [resiitu—
OpenCV header files | |

O | Pl 33 X9 @

in Windows to place
into a single include
directory.

experimental code.
However, the sim-
plest interfaces for
face recognition are

In Foder Sze Type DeA
C:Program Fles\CoenCV\1.0\cvinchude
CuProgram Fles\OpencVi1. 0\ incude 1960 CCes Hanter 0
€ Program Ples\OBeRC\L OV inckude
C:Program Fles OpenCVi3 0\ indude SKB Cles
C:Program Fies\0penCY\LOevincude BB CRes
C:Program Fles OpenCV\1DV e 18 CCes
CoProgram Fies DpenCY\l. Okviere SKB ClCoes
C:Pragram Fies\Cpenc\L 0¥V e S CRes
CProgram Fies\0pendV\1 Oeviere SKB ClCas
C:Program Fles\OpenCV 10K re M Ko
CiProgram Fies \OpenCV\LOVViere EL
C:Program Fies \OpenCV\LOYYre 2 CCae

C\Program Ples OpenCVL 0w orc: s K

\LO\vaurigre M CL:
O 8 Ce-

in this module. The

c
C:Program Ples \OpenCV\1O\cvaargre e cke
C:Program Fies OpencV\LO v wre 3 CKve
¢ Scumasre

code behind them is
specialized for face
recognition, and
they're widely used
for that purpose.

NEESSEFFFESCYREEASSR

C:Program Fies DpenCV O\ varere @ K
OoenCY\LOlvmarere

C:Program Fies) e CK

C:Program Fies Openc. Oicxeareincude nE cce

C:\Program Fies\OpenC |1 O\oncorencude: M3 CKe LY
€ Program Fies'\OpenC V1. 0\cxcore yndude: 108 CCe L
C:iProgram Fles\openCH\1 d\ucare nckde " oo "
C:Program Fies\OpenCV\1.0\orcore ynchude .l K L4
C: Program Fies OpenC V|10 cxcore nchude: LU

C:Program Fles\OpenCV\L0\owore'wrc. 18 oK

CrProgram Fies\OpenCV\1.0'\Cxcore 9 e oK

T

#2888

CoProgram Fies\O0enCVL Oi0wre gr s coe

ML contains machine-learning
interfaces

The remaining functionality is con-
tained in HighGUI and CVCAM. Both of
these are located in a directory named
“otherlibs,” making them easy to miss.
Since HighGUI contains the basic I/0
interfaces, you'll want to be sure you
don't overlook it! It also contains the
multi-platform windowing capabilities.

CVCAM contains interfaces for
video access through DirectX on 32-bit
Windows platforms. However, HighGUI
also contains video interfaces. In this
article, I'll cover only the interfaces in
HighGUI. They're simpler to use, and
they work on all platforms. If you're
using Windows XP or 2000, you may
get a performange boost by switching
to the CVCAM interfaces, but for
learning OpenCV, the simpler ones in
HighGUI are just fine.

Installing OpenCV

Basic Install

OpenCV for Linux or MacOSX is
packaged as a source-code archive.
You'll need to build both static and
shared-object libraries. You can either
build an RPM first and install from that,
or compile and install it directly.
Instructions for doing both are in
INSTALL.

The Windows download is pack-
aged as an executable that installs
OpenCV when you run it. It places
OpenCV files into a directory of your
choice, optionally modifies your system
path to include the OpenCV binaries,
and registers several DirectX filters. By
default, it installs to C:/Program
Files/OpenCV/<version>.

Customizing a Windows Install

For Windows users, OpenCV is
easy to install, and the default installa-
tion will work. But a bit of advance
planning may leave you happier with
the results. Here are a few suggestions.

Since OpenCV is a developers’
toolkit — not a program — you may
want to locate it somewhere other
than your Program Files directory. If
you do prefer to locate it elsewhere,
decide that before you run the installer,
and enter that location when asked.

| suggest you also decide — before
installing — how you want Windows to
find the OpenCV dlls. You can either
modify your system’s PATH variable to
include their location, or you can move
them, after installing, from OpenCV's
“bin" directory to your SYSTEM_ROOT
directory.

If you prefer to move the dlls, but
aren't sure where your SYSTEM_ROOT
directory is, you can locate it by
running the sysinfo utility available at
www.cognotics.com/utilities.

If you prefer to modify the PATH
rather than moving the dlls, you can
have the installer do that for you
by selecting the check box “Add bin
directory to PATH.”

After Installing

The OpenCV directory contains
several subdirectories. The docs directo-
ry contains html documentation for all
the OpenCV functions and datatypes.
Since the best documentation is a
working example, you might also want
to browse the “samples” directory.

The header files you'll need to
include when you compile programs that
use OpenCV are distributed among the

SERVO 01.2007 63

1// ImageIO.c
2//

8 // Example showing how to read and write images

4
$ §include "cv.h"

€ $include "highgui.h"

7 #include <stdio.h>

8

9 int main(int argc, char** argv)
10 {

11 IplImage * pInpImg = 0;

12

13 // Load an image from file

14 cvLoadImage ("my_ image.jpg", CV_LOAD_IMAGE_UNCHANGED) ;

15 if (!pInpImg)

FIGURE 3. Example
program that reads an
image from a file and
writes it to a second
file in a different
compression format.

* hpp. There will be
lots of matches. You
don't need all of
them. Headers for all

16 modules except
17 fprintf (stderr, "failed to load input image\n"); . .

18 R HighGUI are in
o1 separate “include”

20

21 // Write the image to a file with a different name,
22 // using a different image format -- .png instead of .jpg
23 if('cvSavelmage ("my image copy.png", pInplmg))

directories inside each
module. You can skip
headers in the

24 {
25 fprintf (stderr, "failed to write image file\n"); " " . .
28") src” directories for

27

28 // Remember to free image memory after using it!

239 cvReleaselImage (spInpImg);

31 return 0;

these modules. For
HighGUI, you'll need
highgui.h, located in
otherlibs/highgui.

OpenCV modules. Although you don't
need to do this, | like to gather them
together into a single include directory.
On both Linux and Windows, you
can locate the headers by searching the
install directory and subdirectories for
filenames that match the pattern *.h,

Programming with
OpenCV: Some Basics

More about Headers and Libraries
Most OpenCV programs need to

include cv.h and highgui.h. Later, for

face recognition,

1// Capture.c
2//

4 // video frames

s

€ $include "stdio.h"

7 #include "string.h"

8 §include "cv.h"

9 $include "highgui.h"

10

11 int main(int argc, char ** argv)
12 {

13 CvCapture * pCapture = 0;
14 Iplimage * pVideoFrame = 0;
15 int i

16 char filename([50];

18 // Initialize video capture

13 pCapture = cvCaptureFromCAM(CV_CAP_ANY):
20 if(!pCapture)

21 {

27 for (1=0; 1<3; i++)

47 cvReleaseCapture(spCapture);

4 return 0;

3 // Example showing how tc’> connect to a webcam and capture

26 // Capture three videc frames and write them as files

we'll also include
cvaux.h. The
remaining head-
er files are includ-

ed by these
top-level headers.
If you've left

the header files
in multiple direc-
tories (default
installation),
make sure your
compiler’s

22 fprinct (stderr, "failed to initialize video capture\n"): 5
23 return -1; include path con-
24 }

tains these direc-
tories. If you've

s gathered the
23 pVideoFrame = cvQueryFrame(pCapture); :

%0 if('pVidecFrame) headers into one
31 { . .

32 fprintcf (stderr, "failed to get a video frame\n"): InCIUde dlreCtOfy,
33) make sure that
34 " 3

35 // Write the captured video frame as an image file dII'ECtOI’y IS On
36 sprintf(filename, "VideoFrametd.jpg", i+1); iler’
37 if('cvSavelmage (filename, pVideoFrame)) .YOUI' Compller S
5 { include path.

39 fprintf (stderr, "failed to write image file %s\n", filename):; %

«©) Your linker
41 7

42 // IMPORTANT: Don't release or modify the image returned W’” need both
43 // from cvQueryFrame() !

e FIGURE 4. Example
46 // Terminate video capture and free capture resources Drosfam that

captures live video
frames and stores
them as files.

64 SERVO 01.2007

the library path and the names of the
static libraries to use. The static libraries
you need to link to are cxcore.lib, cv.lib,
and highgui.lib. Later, for face recogni-
tion, you'll also link to cvaux.lib. These
are in OpenCV's “lib” directory.

Reading and Writing Images

Image 1/O is easy with OpenCV.
Figure 3 shows a complete program
listing for reading an image from
file and writing it as a second file, in a
different compression format.

To read an image file, simply call
cvLoadimage(), passing it the filename
(line 14). OpenCV supports most common
image formats, including JPEG, PNG, and
BMP. You don't need to provide format
information. cvLoadlmage() determines
file format by reading the file header.

To write an image to file, call
cvSavelmage(). This function decides
which file format to use from the file
extension. In this example, the exten-
sion is “png,” so it will write the image
data in PNG format.

Both cvLoadimage() and
cvSavelmage() are in the HighGUI
module.

When you're finished using the input
image received from cvLoadlmage(), free
it by calling cvReleaselmage(), as on line
29. This function takes an address of a
pointer as its input because it does a
"safe release.” It frees the image struc-
ture only if it's non-null. After freeing it, it
sets the image pointer to 0.

Live Video Input

Capturing image frames from a
webcam, or other digital video device,
is nearly as easy as loading from file.
Figure 4 shows a complete program
listing to initialize frame capture, cap-
ture and store several video frames,
and close the capture interface.

The capture interface is initialized, on
line 19, by calling cvCaptureFromCAM().
This function returns a pointer to a
CvCapture structure. You won't access
this structure directly. Instead, you'll store
the pointer to pass to cvQueryFrame().

When you're finished using video
input, call cvReleaseCapture() to
release video resources. As with
cvReleaselmage(), you pass the address
of the CvCapture pointer to
cvReleaseCapture().

Don't release or otherwise modify

the
ton

Vi
Ipl

/1l

!/
CVR

Cole

gray
fron
and

two
sour
It w

ima
freg

call
orig

Hov

stan
orig

tion
field

W

the Iplimage you receive from cvQueryFrame()! If you need
to modify image data, create a copy to work with:

// Copy the video frame
IplImage *pImgToChange =
cvCloneImage (pVideoFrame) ;

// Insert your image-processing code here ...

// Free the copy after using it
cvReleaseImage (&pImgToChange) ;

Color Conversions

Figure 5 shows code for converting a color image to
grayscale. OpenCV has built-in support for converting to and
from many useful color models, including RGB, HSV, YCrCb,
and CIELAB. (For a discussion of color models, see “The
World of Color,” SERVO Magazine, November 2005.)

Note that the conversion function, cvCvtColor(), requires
two images in its input list. The first one, pRGBImg, is the
source image. The second, pGraylmg, is the destination image.
It will contain the conversion result when cvCvtColor() returns.

Because this paradigm of passing source and destination
images to a processing function is common in OpenCV, you'll
frequently need to create a destination image. On line 25, a
call to cvCreatelmage() creates an image the same size as the
original, with uninitialized pixel data.

How OpenCV Stores Images
OpenCV stores images as a C structure, Iplimage. IPL
stands for Image Processing Library, a legacy from the
original OpenCV versions that required this product.
The Iplimage datatype is defined in CXCORE. In addi-

ers and other high-level constructs. All pixel-level calculations
are performed inside OpenCV functions. However, if you
write your own image-processing algorithms, you may need
to access raw pixel values. Here are two ways to do that:

1. Simple Pixel Access
The easiest way to read individual pixels is with the
cvGet2D() function:

CvScalar cvGet2D(const CVArr*,
int- row, int col);

This function takes three parameters: a pointer to a data con-
tainer (CVArr*), and array indices for row and column location.
The data container can be an Iplimage structure. The topmost
row of pixels is row=0, and the bottommost is row=height-1.

The cvGet2D()function returns a C structure, CvScalar,
defined as

typedef struct CvScalar

{
double val([4];

}
CvScalar;

The pixel values for each channel are in val[i]. For
grayscale images, val[0] contains pixel brightness. The other
three values are set to 0. For a three-channel, BGR image,
blue=val[0], green=val[1], and red=val[2].

The complementary function, cvSet2D(), allows you to
modify pixel values. It's defined as

tion to raw pixel data, it contains a number of descriptive
fields, collectively called the Image Header. These include

+ Width — Image width in pixels
+ Height — Image height in pixels

+ Depth — One of several predefined constants that
indicate the number of bits per pixel per channel. For
example, if depth=IPL_DEPTH_8U, data for each pixel
channel are stored as eight-bit, unsigned values.

+ nChannels — The number of data channels (from one to
four). Each channel contains one type of pixel data. For exam-
ple, RGB images have three channels - red, green, and blue
intensities. (These are sometimes called BGR images, because
pixel data are stored as blue, green, then red values.)
Grayscale images contain only one channel - pixel brightness.

Accessing Pixel Values

It's possible to create many types of functionality using
OpenCV without directly accessing raw pixel data. For
example, the face detection, tracking, and recognition pro-
grams described later in this
series never manipulate raw
pixel data directly. Instead,
they work with image point-

FIGURE 5. Example
program for converting a
color image to grayscale.

1// ConvertToGray.c

2//

38 // Example showing how to convert an image from color
4 // to grayscale

s

€ #include "stdio.h"

7 #include "string.h"

8 $§include "cv.h"

9 #include "highgui.h"

10

11 int main(int argc, char** argv)

12 ¢

13 IplImage * pRGBImg = 0;

14 IplImage * pGrayImg = 0;

i85

16 // Load the RGB image from file

17 PRGBImg = cvLoadImage ("my_image.jpg", CV_LOAD_ IMAGE_UNCHANGEL) ;
18 if (! pRGBImg)

19 {

20 fprintf (stderr, "failed to load input image\n");
21 return -1;
22 }

23

24 // Allocate the grayscale image

25 pGrayImg = cvCreateImage

26 (cvSize (pRGBImg->width, pRGBImg->height), PRGBImg->depth, 1):
27

28 // Convert it to grayscale

29 cvCvtColor (PRGBImg, pGrayImg, CV_RGB2GRAY):

30

31 // Write the grayscale image to a file

32 if('cvSavelImage ("my image gray.3jpg", pGrayImg))

33 {
34 fprintf (stderr, "failed to write image file\n"):
35 }

36

37 // Free image memory

38 cvReleaselImage (spRGBImg) ;
39 cvReleaseImage (spGrayImg);
40

41 return 0;

42)

SERVO 01.2007 65

Resources

Sourceforge site
http://sourceforsc.nct/projccts/opencvllbrary

Official OpenCV usergroup
http:/ /tcch.groups.yahoo.com/group/OpchV

OpenCV Wiki
http:/ /omcvlibrary.sourceforge.net

Source code for the program listings in this article are available'
for download at www.cosnotlcs.com/opencv/ servo.

void cvSet2D(CVArr*, int row, int col,
CvScalar) ;

2. Fast Pixel Access

Although cvGet2D() and cvSet2D() are easy O Use,
if you want to access more than a few pixel values, and
performance matters, you'll want to read values directly
from the raw data buffer, Iplimage.imageData.

Image data in the buffer are stored as a 1D array, in row-
major order. That is, all pixel values in the first row are listed
first, followed by pixel values in the second row, and so on.

For performance reasons, pixel data are aligned, and

padded if necessary, sO that each row starts on an even four-byte
multiple. A second field, Iplimage.widthStep, indicates the
number of bytes between the start of each row's pixel data. That

is, row i starts at Iplimage.imageData + i*|plimage.widthStep.
Iplimage.imageData is defined as type char*, so you may

STEER WINNING ROBOTS
WITHOUT SERVOS!

P erform proportional speed, direction, and steering with
only two Radio/Control channels for vehicles using two
| separate brush-type electric motors mounted right and left
| with our mixing RDFR dual speed control. Used in many
successful competitive robots. Single joystick operation: up
goes straight ahead, down is reverse. Pure right or left twirls
vehicle as motors turn opposite directions. In between stick
| positions completely proportional. Plugs in like a servo to
your Futaba, JR, Hitec, or similar radio. Compatible with gyro
steering stabilization. Various volt and amp sizes available.
The RDFR47E 55V 75A per motor unit pictured above.
- www.vantec.com

VENIEC ::o o205

66 SERVO 01.2007

need to cast the data type. For example, if your image data are
unsigned bytes (the most common input type), you'd cast each
value to unsigned char* before assigning, or otherwise using, it.

If you're accessing data from a grayscale (single-channel)
image, and the data depth is eight bits (one byte per pixel),
you'd access pixel[row][col] with

pixel[row] [col] = ((uchar*)
(pImg->imageData +
row*pImg->widthStep + col));

In multi-channel images, channel values are interlaced.
Here's a code snippet to access blue, green, and red pixel values:

step pImg->widthStep;
nChan pImg—>nChannels;
// = 3 for a BGR image

buf = pImg->imageData;

nou

blue[row] [col] =
((uchar*) (buf + row*widthStep +

nChan*col) ;

green[row][col] =
((uchar*) (buf + row*widthStep +

nChan*col + 1);

red[row] [col] =
((uchar*) (buf + row*widthStep +

nChan*col + 2);

Finally, if image depth is greater than eight bits (for
example, IPL_DEPTH_32S), you'd need to transfer multiple
bytes for each value and multiply the buffer offset by
the number of data bytes for your image depth. It's very
unlikely, however, that you'll encounter a situation in which
you must access multi-byte pixel values directly.

Finding Help

If you have problems installing or using OpenCYV, the first
place to turn for help is the FAQ (fag.htm) in your OpenCV
docs directory. The INSTALL file, at the root of your OpenCV
directory, also contains helpful setup and troubleshooting
tips. If these don’t answer your question, you may want to
post a query to the official Yahoo! user group. The group’s
URL is in the Resources sidebar.

APl documentation for each module is in the docs/ref
subdirectory. All reference manuals except the one for
CVAUX are linked from index.htm, in the docs directory.

Coming Up ...

Next month, I'll show you how 10 detect faces with
OpenCV and explain the algorithm behind the interface. Be

seeing you! SV

About the Author

Robin Hewitt is an independent software consultant working in
the areas of computer vision and robotics. She has worked as a
Computer Vision Algorithm Developer at Evolution Robotics and
is @ member of SO(3), @ computer-vision research group at UC
San Diego. She is one of the original developers of SodaVision, an
experimental face-recognition system at UC San Diego.
SodaVision was built with OpencCV.

-

