b

Seeing With OpenCV

Follow That Face!

Last month’s article in this
series explained how to
implement and configure
face detection. This month,
'l show you how to use
OpenCV to track a face once
you've detected it.

Face Tracking in
OpenCV

Tracking a face is more difficult
than tracking a strongly-colored object.
Skin reflects the ambient light in subtle,
changing ways as a person’s head
turns or tilts.

In principle, you could track a face

by locating it over and over in every

frame, using the Haar detector

described in last month’s article. To do
that, however, you'd need to decide if
the face you detected in each frame is
the same face. If the detector finds
more than one face in a frame, you'd
need to decide which detection is the
one you're tracking. Finally, if a
person’s head tilts towards one
shoulder, or turns towards profile view,
the frontal face detector will no longer
detect it, so you'd need to handle that
situation, as well.

Fortunately, OpenCV includes
specialized code for tracking a face
efficiently, using continuity between
frames to help find the best match for
the face it's following.

The algorithm that OpenCV uses
for face tracking is called Camshift.
Camshift uses color information, but
rather than relying on a single color, it
tracks a combination of colors. Since it
tracks by color, it can follow a face
through orientation changes that the
Haar detector can’t handle. The sidebar,

“How OpenCV's

Face Tracker Works,"
explains this algo-

FIGURE 1. OpenCV’'s
face tracker in action.
[It’s able to follow a
| face as it tilts to one
side and during a turn
to profile.

BB CamShiftDemo
Vmin: 10 - |

Vmax: 256 Vmax: 266

Smin: 32

Vmin: 10 - |

Smin: 63

Vmax: 256

Smin: 63

36 SERVO 03.2007

rithm in more detail.

Camshift was originally developed
for hands-free gaming. It's designed to
be very fast and “lightweight” so the
computer can do other tasks while
tracking. Since it was developed as a
gaming interface, Camshift also has an
(limited) ability to detect changes in
head position, such as tilting the head
to one side. Could you use that ability
to communicate with your robot?
Maybe two fast head tilts mean “Come
here, robot!”

Figure 1 shows OpenCV's face
tracker in action — following a face as
it tilts to one side and during a turn to
profile.

The Camshift Demo

The OpenCV samples directory
contains a program called camshift-
demo. You can get some good hands-
on experience and an intuitive feel for
the Camshift algorithm with this demo
program. Here are the steps for doing
that:

1) Plug in a webcam.

2) Launch the program called camshift-
demo in the samples directory.

3) Use your mouse to select a rectangle
centered tightly on your face.

4) Click in the video-display window
and type the letter b. (The display
should change to look something like
the view in Figure 2.)

| FIGURE 2. To tune the Camshift parameters

| smin and vmin, run the camshiftdemo
program in the samples directory. These
parameters are easier to set if you toggle
to the backprojection view by clicking in
the view window, then typing b.

How OpenCV's Faceracker Works .

OpenCV’s , be ec ol , FIGURE A. Two examples of
_amshift consists of) . the color histogram that
' ' . _ Camshift uses to represent a
__ face,

: ackpro;zctron” in Opencv,[

There's a builtin method

deo frames
hat tmplements it, called
Shift the location of the fa . hoachvideoftame | e lcEekiioiect)
. ’ . Figure C shows the_
¢ Calculate the size and ang| . - ace-probability image in

one video frame as Camshift |
tracks my face. Black pixels
have the lowest probabmty ~

Create a histogram. Camshift represents \e face its value, and white, the high-
cking as a hist grém»(af called a barchart) o st Gray plxets hes mewhere in the mtddle

ure A shows two example hi n , ~ ,,
shift demo program th ips with OpenCV. The 3 Shlft to a new Iocatton Wlth each new video frame,

ch colored bar indicates how many pixel " e Camshift “shifts” its estxmate of the face location, keeping it
zsonhavethat“f Hue is one of t ~ o

"3
=17}
" Aam
A

'egion in which the

This hue is almost, but not quite, r . Thts process ,shlftmg the rectans to correspond with
" ' . . _ the center of gravity is based on an algorithm called “Mean
2 Calculate face probabi , er than it sounc r ift,” by Dorin Comaniciu. In fact, Camshift stands for
nistogram is created only once, ‘ | ‘ on‘cmuously Adaptxve Mean Shn‘t ’ .
afterwards, it's used to assign a “face ' '
2ach image pixel in the video fram 3t foll . Calculate size and ang!e The OpenCV method is
“Face probab ¢ erril nd heav- called “Contlnuously Adaptive” and not just “Mean Shift”
» mathematical, but it's neither! it wo Figure B because it also adjusts the size and angle of the face
shows the bars from a histogram s atop the other. rectangle each time it shifts it. It does this by selecting the
After stacking them, it's clear he right " ~ scale and orientation FGURE C. The normal and face-
for about 45% 0 th 2 | It meal . that are the be'st ﬁt tO probability views as Camshift tracks

"'obability th | m this region th my face. In the face-probability
v view, black pixels have the lowest

ability” ' ; i ; o et - . v§|ue and white the‘highesti Gray
o foraplx W - . ’ ,'fedaf“f"? - toni, . plXClS’ lie somewhere in the middle. ‘

arrive, the
each plxet

of total

FIGURE B. To see what .
face probability” means,
magine stacking the bars in -
2 histogram one atop |
the other. The probability
associated with each color is |
the percent that color bar
contributes to the total
neight of this stack.

~45%
of total

SERVO 03.2007 37

program listing for

1 //// Constants

2 const char * DISPLAY WINDOW = “DisplayWindow”;
3 #define OPENCV_ROOT “C:/Program Files/OpenCv/1.0”
4

5 //// Global variables

6 IplImage * pVideoFrameCopy = 0;

)

8 void main(int argc, char** argv)

9%

10 CvRect * pFaceRect = 0;

11 if(!initAll()) exitProgram(-1);

12

13 // Capture and display video frames until a face

14 // is detected

detecting a face in a
live video stream, then
tracking it using the
Camshift wrapper API.

gray, or black). Color
can be computed for
pixels that are
almost neutral, but
their color values are
unstable, and these
pixels contribute

15 while(1) noise that interferes
LR , _ with tracking.

i // Look for a face in the next video frame C hift

18 captureVideoFrame() ; ARSI uses
19 pFaceRect = detectFace (pVideoFrameCopy) ; two parameters —
20 smin and vmin — to
o3 i ioh ik b S screen out this noise.
22 cvShowImage (DISPLAY_WINDOW, pVideoFrameCopy);

23 if((char)27==cviWWaitKey (1)) exitProgram(0); The;e parameters
24 define thresholds for
25 // exit loop when a face is detected ignoring pixels that
26 if (pFaceRect) break; are too close to
;; J neutral. vmin sets the

29 // initialize tracking

30 startTracking (pVideoFrameCopy, pFaceRect);

31

32 // Track the detected face using CamShift

33 while(1)

threshold for “almost
black,” and smin for
“almost gray.” These
two threshold levels

35 will need to be
35 CvBox2D faceBox; adjusted for your
36 . setup to get good
4 ST i i e AR results with Camshift.
38 captureVideoFrame() ; .

39 Camshift also
40 // track the face in the new video frame uses a third parame-
41 faceBox = track(pVideoFrameCopy) ; ter called vmax, to
42

43 // outline face ellipse S?t a threshold for
44 cvEllipseBox (pVideoFrameCopy, faceBox, p|)§els that are too
45 CV_RGB(255,0,0), 3, CV_Aa, 0); bright. But smin
46 cvShowImage (DISPLAY WINDOW, pVideoFrameCopy) ; has the side effect
47 if((char)27==cviWaitKey (1) break; of also eliminating
48 } g

49 pixels that are close
50 exitProgram(0); to white, so you
51.} shouldn't need to

5) Adjust the sliders for smin and vmin
until the ellipse is well positioned and
the background is mostly black.

6) Repeat Step 4 to toggle back to
normal view, then use Camshift to
track your face.

Tuning Camshift

As mentioned above, Camshift
uses a combination of colors to track
faces. In the representation that
Camshift uses, color is undefined for
pixels that have a neutral shade (white,

38 SERVO 03.2007

tweak vmax to get
good results.

The easiest way to select good
values for your setup is with camshift-
demo. As suggested in the preceding
section, it's easier to set these if you
toggle the viewing mode by clicking
the view window and typing b. (This
alternative view is the called the “face-
probability,” or “backprojection” view.
It's explained in the sidebar.)

Figure 2 shows the effect of
adjusting smin and vmin. Initially, in the
first frame, these were at their default
values. At these levels, Camshift dis-
played a very large ellipse that included

not only my face, but half the room as
well! The reason for the oversized face
detection is clearly visible in the face-
probability view. Background pixels
with a nearly neutral shade contributed
too much noise when vmin and smin
were at their default values.

The middle and right views in
Figure 2 show the effect of increasing
first smin, then vmin. In the right-hand
view, noisy pixels have been largely
eliminated, but the face region still
produces a strong signal. Tracking is
now quite good, and the ellipse is well
positioned.

The Simple Camshift
Wrapper

OpenCV includes source code for
camshiftdemo, but it's not easy to
adapt, since it combines user-input
handlers and view toggling with the
steps for face tracking.

If you're programming in C++,
rather than in C, you could use the
CvCamShiftTracker class, defined in
cvaux.hpp. Again, however, this class
is fairly complex, with many
interfaces, and is only available to C++
programmers.

To make the Camshift tracker
more accessible, |I've written a wrapper
for it in C with four main interfaces:

1) createTracker() pre-allocates
internal data structures.

2) releaseTracker() releases these
resources.

3) startTracking() initiates tracking
from an image plus a rectangular
region.

4) track() tracks the object in this
region from frame to frame using
Camshift.

There are two additional interfaces
for setting the parameters vmin and
smin:

1) setvmin ()
2) setSmin()

The Camshift wrapper is online at
www.cognotics.com/opencv/down
loads/camshift_wrapper/index.htmi.

or
to
ut
he

3SS
ny

Ker
per

ites
\ese

xing
jular—

this
Ising

faces
and

ne at
jown
html.

FIGURE 4. The helper functions initAl1 ()
and exitProgram() handle program
initialization and cleanup.

Combining Face
Detection and Tracking

In camshiftdemo, you needed to
manually initialize tracking with the
mouse. For a robotics application, it
would be much nicer to initialize track-
ing automatically, using a face detec-
tion that the Haar detector returned.
(See last month'’s article for details on
implementing face detection.)

This section shows how to do that
using the Camshift wrapper described
above. The program described here
detects a face in a live video stream,
then tracks it with Camshift. The
source for code for the complete
program, called “Track Faces,” is also
available online at www.cognotics.
com/opencv/downloads/camshift_
wrapper/index.html.

The Main Program

Figure 3 shows the main program
listing for detecting a face in a live
video stream, then tracking it using the
Camshift wrapper API. (This portion is
in TrackFaces.c in the download.) There
are three main program segments:

1) Detect a face.
2) Start the tracker.
3) Track the face.

1) Detect a face. Lines 15-27
implement a loop to examine video
frames until a face is detected. The
call to capturevideoFrame() invokes
a helper method to bring in the
next video frame and create a copy of
t. (Recall from Part 1 of this series that
t's never safe to modify the original
video image!) The working copy is
stored as pvideoFrameCopy, declared
at line 6.

2) Start the tracker. When a face is
detected, the code exits this loop (line
26) and starts the tracker (line 30),
nassing it the face rectangle from the
~aar detector.

1 int initAll()

2 {

3 if(!initCapture()) return 0;

4 if(!initFaceDet (OPENCV_ROOT

5 “/data/haarcascades/haarcascade_frontalface_default.xml”))
6 return 0;

7

8 // Startup message tells user how to begin and how to exit
9 prlntf(“\n**\n"
10 “To exit, click inside the video display, \n”

1L “then press the ESC key\n\n”

12 “Press <ENTER> to begin”

13 “\n**\n”)I.
14 fgetc (stdin) ;

15

16 // Create the display window
i cvNamedWindow (DISPLAY WINDOW, 1);

19 // Initialize tracker
20 captureVideoFrame () ;
21 if(!createTracker (pVideoFrameCopy)) return 0;

23 // Set Camshift parameters
24 setVmin (60) ;
25 setSmin (50) ;

27 return 1;

1 void exitProgram(int code)

2 {

3 // Release resources allocated in this file
4 cvDestroyWindow(DISPLAY WINDOW);

5 cvReleaseImage (&pVideoFrameCopy) ;
6
i
8

// Release resources allocated in other project files
closeCapture() ;
9 closeFaceDet () ;
10 releaseTracker () ;
¥
12 exit (code) ;
13

FIGURE 5. The helper function
~zptureVideoFrame (). At line 11, the
cal to cvFlip() flips the image upside
@own if the origin field is 0.

3) Track the face. Lines 33-48 contain
the face-tracking loop. Each call to the
wrapper's track() method (line 41)
invokes Camshift to find the face
location in the current video frame. The
Camshift result is returned as an
OpenCV datatype called cvBox2D. This

void captureVideoFrame ()

{
// Capture the next frame
IplImage

datatype represents a rectangle with a
rotation angle. The «call to
cvEllipseBox () at lines 44-45 draws
the ellipse defined by this box.

Helper Functions
In addition to the main program,

* pVideoFrame = nextVideoFrame() ;

// Copy it to the display image, inverting it if needed

if(!pVideoFrameCopy)

1
2
3
4
5 if(!pVideoFrame) exitProgram(-1);
6
|
8

9 pVideoFrameCopy = cvCreatelmage (cvGetSize (pVideoFrame),8,3);
10 cvCopy (pVideoFrame, pVideoFrameCopy, 0);
11 if (O==pVideoFrameCopy->origin) cvFlip(pVideoFrameCopy,0,0);

124

SERVO 03.2007 39

ﬁ
bl

References and
Resources
* OpenCV on Sourceforge

http://sourceforge.net/projects/
opencyvlibrary

« Official OpenCV usergroup
http://tech.groups.yahoo.com/
group/OpenCY

* G.R. Bradski, “Computer video face
tracking for use in a perceptual user
interface,” Intel Technology Journal,
Q2 1998.

« D. Comaniciu and P. Meer, “Robust
Analysis of Feature Spaces: Color
Image Segmentation,” CVPR, 1997.

* The Simple Camshift Wrapper
www.cognotics.com/opencv/down
loads/camshift_wrapper/index.html

« Source code in this article can be
downloaded from:
www.cognotics.com/opency/servo

TrackFaces.c also contains helper
functions for initialization and cleanup
— initAll() and exitProgram().
These are shown in Figure 4.

At line 21 in initall(), the call
to the Camshift ~ wrapper’s
createTracker () function pre-
allocates the wrapper's internal data
structures. It's not necessary to pre-

€
4

CvRect* r = 0;

vRect * detectFace (IplImage * pImg)

int minFaceSize = pImg->width / 5;

pFaceRectSeq = cvHaarDetectObjects

1
2
3
4
5 // detect faces in image
6
7
8

(pImg, pCascade, pStorage,
9 13y

10 6,

11 CV_HAAR_DO_CANNY_PRUNING,

12 cvSize (minFaceSize, minFaceSize));
13

14 // if one or more faces are detected, return the first one
15 if (pFaceRectSeq && pFaceRectSeg->total)

16 r = (CvRect*)cvGetSeqElem(pFaceRectSeq, 0);
17

18 return r;

1954

FIGURE 6. The detectFace() function.
The min_neighbors parameter is set to 6 to
reduce the chance of a false detection.

allocate the tracking data, but doing so
speeds the transition from face
detection to tracking. The next two
statements (lines 24-25) set the
parameters smin and vmin. The best
values to use for these depends on
your setup, so it's a good idea to select
them ahead of time using the camshift-
demo program, as described above.
Figure 5 shows the listing for
captureVideoFrame (). At line 11, a call
to cvFlip() flips the image upside
down if the origin field is 0. The
reason for doing this is that some web-
cam drivers — especially on Windows —

Show the punk with the volcano
a real science fair project.

V4

40 SERVO 03.2007

Paper Mache has been:,done. i

deliver image pixels starting at the
bottom, rather than at the top, of the
image. The origin field indicates which
row order the Iplimage uses. Some
OpenCV functions will only work cor-
rectly when these images are inverted.
Finally, Figure 6 contains the
detectFace() function. Although this
code should be familiar from last
month’s article, one point worth
noting is that the min_neighbors
parameter should be set high enough
that false face detections are unlikely.
(Otherwise, your robot might start
tracking the refrigerator magnets!) At
line 10, I've set it to 6, which is more
restrictive than the default value of 3.

Coming Up

So far, the faces we've been finding
and following have been anonymous.
The robot can tell there's a face present,
and can follow it, but has no way of
knowing whose face it is. The process
of linking faces to names is called face
recognition. OpenCV contains a
complete implementation of a face-
recognition method called eigenface.

The remaining two articles in this
series will explain how to use OpenCV's
eigenface implementation for face
recognition. In the first of these, I'll
explain how the algorithm works and
give you code to create a database of
people your robot “knows.” The article
following that takes you through the
steps for recognition from live video,
and gives you tips to help you get the
most out of eigenface.

Be seeing you!

