Seeing With OpenCV

Face Recognition With Eigenface

by

next, this series concludes by
showing you how to use
OpenCV’s implementation of
eigenface for face recogpnition.

ce recognition is the process of
Futting a name to a face. Once

you've detected a face, face
recognition means figuring out whose
face it is. You won't see security level
recognition from eigenface. It works
well enough, however, to make a fun
enhancement to a hobbyist robotics
project

This month's article gives a
detailed explanation of how eigenface
works and the theory behind it. Next
month’s article will conclude this topic
by taking you through the program-
ming steps to implement eigenface.

What is Eigenface?

Eigenface is a simple face recogni- |

FIGURE 1. Euclidean distance, dg, for two |
points in two dimensions. |

>y

36 SERVO 04.2007

Robin Hew

tion algorithm that's easy to imple- |
ment. It's the first face-recognition
method that computer vision students
learn, and it's a standard, workhorse
method in the computer vision field.
Turk and Pentland published the paper |
that describes their Eigenface method
in 1991 (Reference 3, below). Citeseer
lists 223 citations for this paper — an |
average of 16 citations per year since
publication!

The steps used in eigenface are
also used in many advanced methods.
In fact, if you're interested in learning
computer vision fundamentals, |
recommend you learn about and
implement eigenface, even if you don't
plan to incorporate face recognition
into a project! One reason eigenface is
so important is that the basic principles
behind it — PCA and distance-based
matching — appear over and over in
numerous computer vision and
machine learning applications.

Here's how recognition works:
Given example face images for each of
several people, plus an unknown face
image to recognize,

1) Compute a “distance” between the
new image and each of the example
faces.

2) Select the example image that's
closest to the new one as the most
likely known person.

3) If the distance to that face image is
above a threshold, “recognize” the |
image as that person, otherwise, classi-
fy the face as an “unknown"” person.

How “Far Apart”
Are These Images?

Distance — in the original eigen-

itt

face paper — is measured as the pos
to-point distance. This is also
Euclidean distance. In two dimensi
(2D), the Euclidean distance be
points Py and P; is

du s Sqrt(sz o Ayz):
where Ax = x; - X1, and Ay = y; - ;.

In 3D, it's sqrt(Ax? + Ay? + Az%)
Figure 1 shows Euclidean distang
in 2D.

In a 2D plot such as Figure 1, the
dimensions are the X and Y axes. To.
get 3D, throw in a Z axis. But what a
the dimensions for a face image?

The simple answer is that
eigenface considers each pixel location
to be a separate dimension. But there's
a catch ...

The catch is that we're first going
to do something called dimensionality
reduction. Before explaining what that
is, let's look at why we need it.

Even a small face image has a lot
of pixels. A common image size for
face recognition is 50 x 50. An image
this size has 2,500 pixels. To compute
the Euclidean distance between two
of these images, using pixels as
dimensions, you'd sum the square of
the brightness difference at each of the
2,500 pixel locations, then take the
square root of that sum.

There are several problems with

g0 IRCRGRSSRENAEY AN

this approach. Let's look at one of that”

them — signal-to-noise ratio. ssef
. e

Noise Times 2,500 0w

is a Lot of Noise -
By computing distance between D.ﬂ'

face images, we've replaced 2,500 Ret

differences between pixel values with a

single value. The question we want to

consider is, "What effect does noise for

W.mE 2. Right: Fitting a
e o three points is a
ol case of PCA. Left:
. project points from the
¥® map onto the 1D
e locate the point on
»e Ine that's closest to
e 2D point. Bottom:
" 1D subspace, and the
swances between points
» s subspace.

wave on this value?”

et's define noise as

wwehing — other than an

wouty difference — that
yeects pixel brightness.

[Los Angeles]| ~ [Abuquerauel

rwo images are exactly

sweetcal, and small, inci-

w-tal influences cause changes in

= brightness. If each one of these

1 500 pixels contributes even a small

y=ount of noise, the sheer number of
sy pixels means the total noise level
be very high.

Amidst all these noise contribu-

s, whatever information is useful
identifying individual faces is
~~esumably contributing some sort of
-nsistent signal. But with 2,500 pixels
-ach adding some amount of noise to
+e answer, that small signal is hard to
“nd and harder to measure.

Very often, the information of
~terest has a much lower dimension-
sty than the number of measure-
—ents. In the case of an image, each
~xel’s value is a measurement. Most
ely, we can (somehow) represent
e information that would allow
s to distinguish between faces from
jifferent individuals with a much
smaller number of parameters than
2,500. Maybe that number is 100;
maybe it's 12. We don't claim to know
n advance what it is, only that it's
orobably much smaller than the
number of pixels.

If this assumption is correct, sum-
ming all the squared pixel differences
would create a noise contribution
that's extremely high compared to the
useful information. One goal of
dimensionality reduction is to tone
down the noise level, so the important
information can come through.

Dimensionality
Reduction by PCA

There are many methods
for dimensionality reduction. The

one that eigenface uses is called
Principal Components Analysis — PCA
for short.

Line Fitting and PCA

To get an intuition for what PCA
does, let's look at a special case of PCA
called a “least squares line fit." The
lefthand side of Figure 2 shows an
example of fitting a line to three
points: the 2D map locations for Los
Angeles, Chicago, and New York. (To
keep the explanation simple, I've
ignored 3D factors such as elevation
and the curvature of the Earth.)

These three map points are almost
— but not quite — on a single line
already. If you were planning a trip,
that relationship would be useful
information. In that sense, a single line
expresses something essential about
their relationship. A line has only one
dimension, so if we replace the points’
2D locations with locations along a
single line, we'll have reduced their
dimensionality.

Because they're almost lined up
already, a line can be fitted to them
with little error. The error in the line fit
is measured by adding together the
square of the distance from each point
to the line. The bestfit line is the one
that has the smallest error.

Defining a Subspace

Although the line found above
is a 1D object, it's located inside
a larger, 2D space, and has an
orientation (its slope). The slope of
the line expresses something
important about the three points. It
indicates the direction in which
they're spread out the most.

If we position a rectangular (xy)
coordinate system so that its origin is
somewhere on this line, we can write
the line equation as simply

y = mx,

where m is the line’s slope: Ay/Ax.

When it's described this way, the
line is a subspace of the 2D space
defined by the (x,y) coordinate system.
This description emphasizes the
aspect of the data we're interested in,
namely the direction that keeps these
points most separated from one
another.

The PCA Subspace

This direction of maximum
separation is called the first principal
component of a dataset. The direction
with the next largest separation is the
one perpendicular to this. That's the
second principal component. In a 2D
dataset, we can have at most two
principal components.

Since the dimensionality for
images is much higher, we can have
more principal components in a
dataset made up of images.

However, the number of principal
components we can find is also limited
by the number of data points. To see
why that is, think of a dataset that
consists of just one point. What's the
direction of maximum separation for
this dataset? There isn't one, because
there’s nothing to separate. Now
consider a dataset with just two points.
The line connecting these two points
is the first principal component.
But there's no second principal

component, because there’s nothing
SERVO 04.2007 37

“,
4

| FIGURE 3. Left: Face images

for 10 people. Right: The
' first six principal components
E viewed as eigenfaces.

Projecting Data Onto a
Subspace

Meanwhile, let's
finish the description of
dimensionality reduction
by PCA. We're almost
there!

Going back to the
map in Figure 2, now
that we've found a 1D
subspace, we need a
way to convert 2D
points to 1D points. The
process for doing that is
called projection. When
you project a point onto
a subspace, you assign it
the subspace location

more to separate: both points are fully
on the line.

We can extend this idea indefinite-
ly. Three points define a plane, which is
a 2D object, so a dataset with three
data points can never have more than
two principal components, even if it's
in a 3D, or higher, coordinate system.
And so on.

In eigenface, each 50 x 50
face image is treated as one data
point (in a 2,500 dimensional
“space”). So the number of principal
components we can find will never be
more than the number of face images
minus one.

Although it's important to have a
conceptual understanding of what
principal components are, you won't
need to know the details of how to
find them to implement eigenface.
That part has been done for you
already in OpenCV. [I'll take you
through the APl for that in next
month’s article.

that's closest to its
location in the higher dimensional
space. That sounds messy and
complicated, but it's neither. To
project a 2D map point onto the line
in Figure 2, you'd find the point on
the line that's closest to that 2D
point. That's its projection.

There's a function in OpenCV for
projecting points onto a subspace, so
again, you only need a conceptual
understanding. You can leave the
algorithmic details to the library.

The blue tic marks in Figure 2
show the subspace location of
the three cities that defined the
line. Other 2D points can also be
projected onto this line. The righthand
side of Figure 2 shows the projected
locations for Phoenix, Albuquerque,
and Boston.

Computing Distances Between Faces
In eigenface, the distance
between two face images is the
Euclidean distance between their
projected points in a

FIGURE 4. Face images
from two individuals. Each
individual's face is displayed
under four different lighting
conditions. The variability
due to lighting here is greater
than the variability between
individuals.

Eigenface tends to confuse
individuals when lighting
effects are strong.

38 servO 04.2007

PCA subspace, rather than
distance in the original 2
dimensional image space. Com
the distance between faces in
lower dimensional subspace is
technique that eigenface uses
improve the signal-to-noise ratio.

Many advanced face recognits
techniques are extensions of
basic concept. The main diffen
between eigenface and t
advanced techniques is the pr
for defining the subspace. In
of using PCA, the subspace mi
be based on Indepen
Component Analysis (ICA) or
Linear Discriminant Analysis (LD
and so on.

As mentioned above, this b
idea — dimensionality reducti
followed by distance calculation in
subspace — is widely used in computes
vision work. It's also used in othes
branches of Al. In fact, it's one of the
primary tools for managing complexity
and for finding the patterns hidden
within massive amounts of real world
data.

Picturing the Principal
Components

1eg1y42 B 1

In our definition of a line as a o
1D subspace, we used both x and y 3.
coordinates to define m, its 2D slope. P
When m is a principal component for P
a set of points, it has another name. -
It's an eigenvector. As you no doubt
guessed, this is the basis for the name " 3
“eigenface.” Eigenvectors are a $acs
linear algebra concept. That concept =
is important to us here only as g
an alternative name for principal g
components. i

For face recognition on 50 x 50 3
images, each eigenvector represents
the slope of a line in a 2,500 dimen- —
sional space. As in the 2D case, we 0
need all 2,500 dimensions to define -
the slope of each line. While it's an
impossible to visualize a line in that
many dimensions, we can view the HOH
eigenvectors in a different way. We Thw
can convert their 2,500 dimensional 10¢
“slope” to an image simply by placing fro
each value in its corresponding pixel .
location. When we do that, we get ser

facelike images called — guess what —
eigenfaces!

genfaces are interesting to look
wnd give us some intuition about
orincipal components for our
»set. The lefthand side of Figure
~ows face images for 10 people.
¢ face images are from the
. Face Database B (References 4
5). It contains images of
=s under a range of lighting
~4itions. | used seven images for
~ of these 10 people to create a
MCA subspace.
The righthand side of Figure 3
ws the first six principal compo-
s of this dataset, displayed as
senfaces. The eigenfaces often have
nostly look, because they combine
=ments from several faces. The
jhtest and the darkest pixels in
sch eigenface mark the face regions
st contributed most to that principal
mponent.

Limitations of Eigenface

The principal components that
>CA finds are the directions of
reatest variation in the data. One of
e assumptions in eigenface is that
srability in the underlying images
-orresponds to differences between
Zdividual faces. This assumption is,
nfortunately, not always valid.
figure 4 shows faces from two
~dividuals. Each individual's face is
iisplayed under four different lighting
-onditions.

These images are also from the
vale Face Database B. In fact, they're
face images for two of the 10 people
shown in Figure 3. Can you tell which
-nes are which? Eigenface can't. When
ighting is highly variable, eigenface
»ften does no better than random
guessing would.

Other factors that may “stretch”
image variability in directions that tend
to blur identity in PCA space include
changes in expression, camera angle,
and head pose.

Figure 5 shows how data distribu-
tions affect eigenface’s performance.
The best case for eigenface is at the
top of Figure 5. Here, images
from two individuals are clumped
into tight clusters that are well
separated from one another. That's
what you hope will happen. The
middle panel in Figure 5 shows what

Bottom: A realistic scenario —
separation, with some overlap.

you hope won't happen. In this panel,
images for each individual contain
a great deal of variability. So much
so, that they’'ve skewed the PCA
subspace in a way that makes it
impossible for eigenface to tell these
two people apart. Their face images
are projecting onto the same places in
the PCA subspace.

In practice, you'll probably find
that the data distributions for face
images fall somewhere in between
these extremes. The bottom panel in
Figure 5 shows a realistic distribution
for eigenface.

Since the eigenvectors are
determined only by data variability,
you're limited in what you can do to
control how eigenface behaves.
However, you can take steps to limit,
or to otherwise manage, environmen-
tal conditions that might confuse it.
For example, placing the camera at
face level will reduce variability in
camera angle.

Lighting conditions — such as side
lighting from windows — are harder for
a mobile robot to control. But you
might consider adding intelligence on
top of face recognition to compensate
for that. For example, if your robot
knows roughly where it's located, and
which direction it's facing, it can
compare’ the current face image only
to ones it's seen previously in a similar
situation.

Even highly-tuned commercial
face recognition systems are subject
to cases of mistaken identity. In fact,
part of the challenge of incorporating
face recognition into any robotics appli-
cation is finding ways to accommodate
these.

Coming Up

Next month’s article concludes this
series by taking you step-by-step
through a program that implements
eigenface with OpenCV.

Be seeing you! SV

What you
hope won't
happen

What's likely
to happen

@ John
O Joseph

References and
Resources

e

SERVO 04.2007 39

