
i tace paper - is measured as the
tcpornt distance This is also
Euclidean distance. In two dime
(2D), the Eucl idean dir tance
po nts Pj and P, rs

d r z = s q f t ( A x 2 + A y 2 ) ,
where Ax = x2 - xr, and  y = y, - yr.

l n
Figure
in 2D

3D, lt's sqrt(Ax'� + Ay'� +
I shows Euclidean dista

recogn t on means figur ng out whose
lace it is. You won't see security level
recognition from eigenface. lt works
wel enough, howevef, to make a fun
enhancement to a hobbyist robotics

a
a

r , r  s month's art ic le gives a
r. : :  ed expanaton of how egenface
.Jor<s a^d the theory behind i t .  Next
montn t  artce \4/ i  conclde this lopic
by takrng yo! through rhe program
ming steps to mpem€nt e genface.

The catch is that we're first going
to do sor.eth n9 cal ed dimensionality
reductlo, Eefore expaining what that
is, lefs look at why we need h.

Even a rmall face image har a lot
of pixels. A common image 5ize for
face recognition s 50 x 50. An image
rnrs srze nas 2,5urJ prxes. to (ompute
the Eucidean distance between iro
ol  these images, using pixes as
dimensions, you d sum the square of
the brightness difference at each of the
2,500 pixel ocations, then take the
square root of that sLlm.

There are several problems with
this approach. Let's ook at one of
them signal-to-noise fat o.

Noise Times 2,500
is a lot of Noise

By comput ng distance between
Jace mages, we've replaced 2,500
drfferences between pixelva ues with a
s ngle value. The question we want to
consder s, "What effect does noise

What is Eigenface?
Egenlace t d 5imple face recogni.

. €uclid..n dlst�nca d& for twoFI6URE

Di|
Re

Seeing With OpenC
Face Recognition With Eigenface

next, * s seri€s conddes by
showing you how to use
OpenCV! implementation of
eigenface for face recognition.

ce recognition i5 the process of
Putting a name to a face. Once
you've detected a face, face

tion algorithm that's easy to mple
ment l ts the f i fst  face,recognit ion
method that computer vision students
earn, and ts a standard, wo*horse
method n the computer vis ion feld.
Turk and Pentand p!bl ished the paper
that describes ther Eigenface method
n 1991 (Reference 3, beow). Citeseer
sts 223 c(ations for thir paper - an

average of 16 citations per year stnce
publ lcat ionl

The neps used in eigenface are
also used in many advanced methods.
ln fact, f you're nterested n learning
computer vis ion fundamentals,  I
recommend you earn about and
implement eigenface, even f you dont
plan to incorporate face recogntion
Into a prolectl One reason eigenface is
to mportant s that the basic pr nciples
behind it PCA and distance,based
matchrng - appear over and over in
numerou5 computer vis ion and
machine learning app icat ions.

Hefe's how recognit ion works:
G ven erample face images for each of
severa people, plus an unknown face
image to recognize,

1) Compute a "distance" between the
new rmage and each of the example
taces

2) Select the example image thafs
closest to the new one as the most
I kely known pe6on.

3) lf ihe d stance to that face image s
above a threshold, "recognize" the
rmage as that person, otherwtse. classt-
fy the face as an "unknown" person.

How'Far Apart"
Are Ihese lmages?

Dstance in the orgina eigen-

ln a 2D plot such a5 Figurc 1,
d mensions are the X and Y axes.
get 3D, throw in a Z axis. But what
the dimensons for a face mage?

The simple answer is
eigeniace consders each pixel ocataon
to be a separate dimension, But there't
a catch
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a9.aE 9. Righ! Fitthg 3
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t ror..t points from thc
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'4.  :n this value?
-:r's define noise a5

r.- .9 - other than an
_'-':/ di{ference - that
.  ' , : 's Pixel  bnghtness
. 'ra images are exactly
. ._: .aI ,  and smal l ,  inci
., : nfluences cause changes In
: ,' Drghtness. lf each one ol these

':,: pxels contributes even a small
, _ -nt of noise, the sheer number ol

:, pixels means the total noise level
.e very hlgh.
Amdst all these noise contnbu'

'!, whatever information is uSelul
- dentifying individual faces i5
lr.imably contributing some son or
-rBtent signal. But with 2,500 pxels

::r adding some amount of noise to
-. answel that small signal is hard to
_ r and harder to measure.

very often, the information o{
_'€rest has a much lower dimension_
i f than the number of measure
-.nts. ln the case of an image, each
: (el's value is a measurement Most
<ely, we can (somehow) rePresent

'-e information that would allow
-r to distinguish between faces from
r fferent individuals with a much
:naller number of Parameters than
:500. Maybe that number is 10o;
-raybe it's 12. we don't claim to know
. advance what it i5, only that it's
srobably much smaller than the
.umber of pixels.

lf this assumpt|on 15 correcl. sum-
T ng all the squared pixel differences
r,/ould create a noise contribution
rhat's extremely high compared to the
Lrseful information one goal of
C mensionality reduction is to tone
down the noise level, so the important
Information can come through

There are
for dimensional i tY

many methoos
reduction. The

Dimensionality

one that eigenface uses is called
Pincipal Components Anarsis - PCA
Jor short.

Line Fitting and PCA
To get an intuition for what PcA

does. let's look at a special case of PCA
called a "least squares line fit ' The
lefthand side of Figure 2 shows an
example of fitting a line to three
ooints: the 2D mao locations for Los
ingeles, Chicago, and New York (To
keep the explanation simple, l've
ignored 3D factors such as elevatlon
and the curvature of the Eadh )

These three maP Points are almost
- but not qLlite - on a single line
already. lf You were Planning a tnp,
that relationshiP would be useiul
information. In that sense. a single line
expresses something essential about
their relationship. A line has only one
dimension, so if we rcplace the points'
2D locations with locations along a
single line, we'll have reduced their
dimensionalitY.

Because they're almost lined uP
akeady, a line can be fitted to them
with little error The error in the line fit
is measured by adding together the
square of the distance from each polnt
to the line. The best_fit line is the one
that has the smallest error'

Defining a Subspace
Althouqh the line found above

is a 1D ;biect, it's located inside
a larger, 2D space, and nas an
orientation (its slope). The slope ot
the l ine expresses somethlng
important about the thrce points lt
indi.ates the direction in which
they're spread out the most.

lf we position a rectangular QqY)
coordinate system so that its origin b
somewhere on this line, we can wlhe
the line equation as simPlY

Y = m x ,

where m is the line s slope: AY/lx.
when it's described this way, the

line is a subspace of the 2D space
defined by the (x,y) coordinate system
This description emPhasizes the
aspect of the data we're interested in
namely the direction that keeps these
points most separated lrom one
another.

The PCA SublPe(e
This dire(tion ol maximum

separation i5 called the first principal
component of a dataset The direction
with the next larqest separation i5 the
one perpendicular to this Thafs the
second principal component. In a 2D
dataset, we can hav€ at most two
principal comPonents

Since the dimensionali ty for
images is much highet we can.have
more princiPal comPonents In a
dataset made uP ol lmages-

However, the number ol Principal
components we can find is also limited
by the number of data Points. To see
why that is, think of a dataset that
consists of just one point What's the
direction of maximum separatpn lor
this dataset? There isn't one because
there's nothing to separate Now
consider a dataset with just tlvo points
The line connecting these two points
is the first Principal component
But there's no second Principal
component, because there s nothlng

Reduction bY PCA,500
r l r  a
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FIGURE 3. L.tt F6c. lm.sEs
ior 10 p.oplc. Righi Thc
first sh prlnclprl componants
vlcwrd 6r cigcnf.c6.

Proiecting Data Onto a
Sub5pa(e

Meanwhi le.  let 's
flnish the description of
dimenslona ity reduction
by PCA. we're almost
therel

coing back to the
map in Fgure 2, now
that weve folnd a lD
subspace, we need a
way to convert  2D
points to 1D points.  The
process for doing thal is
caled project ion. When
you projecr a po nr onro
a suospace, you assrgn rr
the subspace locat ion
that 's closest to i ts

iore to separate: both polnts are fully

We can extend th s idea indeflnite-
ly. Three points def ne a plane, which is
a 2D object, so a dataset with three
data points can never have more than
two principal components, even if its
in a 3D. or higher, coordinate systern.

In e genface, each 50 x 50
fare mage s treated as one data
po nt (  n a 2,500 dimens onal
"space')  so the number of pr incpal
components we can f ind wi l  never be
more than the number oi face irnages

Although it's important to have a
conceptual understanding of what
principal components are, you won't
need to know the detais of how to
find them to implement eigenface.
That part has been done for you
already in OpenCV. l  l  take you
throLrgh the API for that in next
month'9 art  c le.

locat ion in the higher dimensiona
space. That sounds me5sy and
complicated, but i t 's nether.  To
project a 2D map point onto the line
in Figure 2, you'd f ind the point on
the line that's closest to that 2D
point. That s ts projection.

There's a function in Opencv for
projectlng points onto a subspace, so
again. you only need a conceptual
understanding. You can leave the
algoithmic details to the library.

The blue t ic marks n Figure 2
show the subspace ocat ion of
the three ct ies that def ined th€
l ine. Other 2D point5 can aso be
projected onto this line The righthand
side of Figure 2 shows the prolected
locations for Phoenix, Albuquerque,
and Boston.

Computing Distances Between Fa<6
In eigenface. the distance

between two face images s the
Eucldean distance between their

projected points in a

FIGIJRE 4. F.c€ im.s€s
trom two individuals, Elch
indivdu.l3 f.c. ls displo€d
undcr four ditferent lighting
condltlons, Tha v.rl.blllty
due to liShting her€ is gffit r
thrn thc vlrilbillty b€tw€.n
indivldu.h.

Eig€nfaca tands to confusc
individu.13 when lighting

II
IT
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PcA subspace, rather than
d stance in the or ginal  2
dimensional image space. Com
the distance between faces in
lower dimensional subspace i!

techniques are exten5ron5 ol
basic concept. The ma n

technique that eigenface uset
improve the signal'to noise ratio.

Many advanced face

between eigenface and
advanced techniques is the
for defin ng the subspace. I
of usng PCA, the sLrbspace m
be based on Inde
Component Analysis ( lCA)
Linear Discrim nant Ana ysis
and so on.

As mentioned above, this
idea - dimensronali ty reducti
fo lowed by dstance calculation in
subspace - is wldely used ln com
vison work. lt's also lsed in
branches of Al. In fact. it's one of
primary tools for manaq n9 complexi9
and for findng the patterns hidden
within massi\e amounts of real worH
data.

Picturing the Principal
Components

ln our def ini t ion of a l ine as a
lD subspace, we used both x and y
coordinates to define m, its 2D slope.
When m is a principal component for
a set of points, it has another name,
It s an eigenvector. As yolr no doubt
guessed, this is the basis for the name
"eigenface." Eigenvectors are a
linear agebra concept. That concept
is lmportant to us here only as
an a ternat ive name for pr inopal

For face recognition on 50 x 50
imag€s, each eigenvector represents
the slope of a l ine in a 2.500 dimen-
sional space, As n the 2D case, we
need all 2,500 d mensions to detine
the sope of each l ine. Whi le i ts
impossible to visualize a line n that
many dimensions, we can vrew the
eigenvectors n a different way. We
can convert  their  2,500 dimensional
"slope to an image smply by placing
each value in its cofiesponding pixel
location. When we do that, we get
facelke lmages cal led -  guess what -
eigenlacesl
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l8enfaces are interesting to look
t 3nd give us gome intuition about
tq pnncipal componenls for our
]riet fhe lelthand side of Figure
! ;-ol/vs face images for 10 People.
-6e face imageS are from the
,.. Face Database B (Re{erences 4
,',: 5). lt contains images ol
'xes under a range ol lighting
-ro,tions. I used seven images for
..:.l of these l0 PeoPle to create a
'CA subspace.

ft€ ghthand side ot Figure 3
r-!:\^/s the first six pdncipal compc
_..ts of this dataset, displayed as
r:enfaces. The eigenfaces often hav€
r :.osily look, b€cause they comblne
.inents from several faces. The
:.ghtest and the darkest Pixel5 an
.'.+ eiqenface ma* the face regions
-:i co;tributed most to that principal

limitations of Eigenface
The principal components that

t{A finds are the directions of
.r€ate5t variation in the data. one of
:.e assumptions in eigenface is that
.ariability in the underlying images
:crrespond5 to differences between
.dividual faces. This assumption is,
,nfortunately, not always valid.
.rgure 4 shows Iaces from two
ndividuals. Each individual's face is
I splayed under four different lighting
aonditaons,

The5e images are also from the
Yale Face Database B. In fact, they're
face images for two of the 10 PeoPle
shown in Figure 3. Can you tell which
ones are which? Eigenface can'l When
llghting is highly va able, eigenface
often does no better than random
- 

othlr factors that may "stretch"

mage variability in directions that tend
to blur identity in rcA space include
changes in expression, camera angle,
and head pose.

Figure 5 shows how data distribu-
tions alfect eigenface's performance
The best case for eigen{ace is at the
top of Figure 5. Here, rmage5
from two individuals are clumped
into tight clusters that are well
separated from one anolher- Thats
what you hope will hapPen. The
middle panel in Figure 5 shows what

you hop€ r4,on't happen. In thb Penel,
images tor each individual contaan
a great deal ol vadability So much
so. that thdv€ skewed the rcA
subspace in a way that makes rt
impossible for eigen{ace to tell these
two people apart. Their face images
are plojecting onlo the 5ame places ln
the PcA subspace.

In practice, You'll Probably find
that the data distributions for face
images fall somewhere in between
these extremes. The bottom panel in
Figure 5 shows a realistic distribution
tor eigenface.

Since the eigenvectors are
determined only by data varjability,
youle limited in what You can do to
control how eigenlace behaves
However, you can take steps to limit,
or to olherwise manage, envircnmen-
tal conditions that might confuse it
For example, Placing the camera at
face level will reduce variability in
cameta ang|e,

Lighting @nditions - such as side
lighting trorn windows -are harderfor
a mobib robot to control. 8ut You
might consider adding intelligence on
top ot face recognition to compensate
for that. For example, if Your robot
knows roughly where it'5 located, and
which direction it's fa<ing, it can
compard the current face image only
to ones it's seen previously in a similar
situation.

Even highly'tuned commercial
face recognition systems are subied
to cases of mistaken identity. In tact,
part of the challenge of incorporating
face recognition into any robotics appli-
cation is finding ways to accommodate
these.

Coming Up
Next monlh's article concludes this

series by taking You stePby-step
through a program that irnplements
eigenface with OPenCV.

Be seeing youl SV
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